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ABSTRACT 

I We define the complete problem of a two-stage linear programming 

under uncertaintyv to bet 

Minimize    zlx)    =E-{cx+qy   + q"y" } 

subject to Ax = b 

Tx + Iy+ + ly"   ■ K 

I x^Oy+^o   y"^0 

where    x   is the first-stege decision varisble, the peir    (y iy") 

represents the second-stage decision variables*    In order to solve 

this class of problem, we derive a convex programming problem, 

whose set of optimal solutions is identical to the set of optimal 

solutions of our original problen-.    This problem is called the 

equiyalent convex programming«    If the random variable    I    has a 

continuous distribution, we give an algorithm to solve the equivalent 

convex program.    Moreover, we derive explicitly the equivalent convex 

program for a few common distributions* 
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I.    INTRODUCTION 

The standard form for the two-stage linear program under uncertainty 

is: 

(1) Minimize   z(x) = Er  {ex + qyj 

subject to Ax = b 

Tx -•■ My   =5       Kt{Z,&,F) 

x > ü   y ^ 0 

where    A    is a matrix   mxn,   T    is    mxn,M    Is   inxn,   C    isa random 

vector whose probability space is    (S, fl ,F).    This problem (1) belongs to 

the class of stochastic lineer programming problems for which one seeks a 

here-end-now solution,    Che interprets problem (1) as follows:    the 

decision meker selects the activity levels for   x,   say    x = x,   he then 

observes the random event   5 = 5    and he is finally allowed a corrective 

action   y ,   such that   y^O,   My = 5  -Tx and   qy    is minimum.    This second 

stage decision    y ,   is taken when no "uncertainties" are left in the problem. 

The decision maker wants to minimize the sum of his fixed costs    (ex) 

and of the penalty costs he may expect when he has selected given activity 

levels    (x).    It is clear from this interpretation that we could also write 

the objective function of (1) 

(2) z( x) = ex + E^ { min qy I x } . 

All quantities considered here belong to the reals,  denoted   R .   Vectors 

will belong to finite-dimensional real vector spaces    R      and whether they 

are to be regarded as row vectors or column vectors will always be clear from 

 ,  



the context in which they appear. Thus, for example» the expressions 

X s \Xi$• • • tX^f• • • $X£) 

Tx= x 

4.  -ffi 

i=i 

are easily understood.    No special provisions will be made for transposing 

vectors. 

The random vector   C = (5,   •••• Cj    5-)    is a "numerical" 1 1 m 

random vector, i.e.    Z cRm» 0     is an algebra or a    o -algebra and   F   is 

a probability distribution function from which could be obtained a probabil- 

ity measure.    & » B*» F.)    is the probability space of the random variable C. • 

We only need independence of   C   and   x t   our first-stage decision has then 

no effect on    (J,8,F) . 

If for every finite interval,    '«(C*)    has a finite number of discontinu- 

ity points, then we can always integrate by parts    | 8i(^4)dFi(^i) »   where 

gj(Cj)   is a linear function of   K. .   If it exists, we denote the density 

function of   K.    by   f^j)    i = l,...,m     and let   a.    and   ß.    be respectively 

the greatest lower bound and least upper bound, if they exist, of   K, .   We 

assume that    £.    { (. }    exists for all   1=1, m. 
*i     1 

We say that problem (1)  is complete when the matrix   M (after an appropriate 

rearrangement of rows and columns) can be partitioned in two parts, whose first 

part is an identity matrix and the second part is the negative of an identity 



itrix,    M« (I, -I) • 

The standard form of th« problem to bt studied In thla article is then 

(3)        Minimize       a(x) » IL{cx + q+y+ 4 q"y"] 

subject to Ax B b 

Tx + I7+   - ly"     « C    Ctd, 3, F) 

x 1 0,7+ ^ 0,y" ^ 0 

where we partitioned the vectors   q   and   7   of the standard form (1) in 

(q ,q~)    and   (7 ,y")f respective^«   The fact that   m = 0   (I.e. there 

are no constraints of type    Ax ^ b)   does not alter the characteristics of 

our problem* 

Among all classes of special cases of the two-stage linear programs 

under uncertainty, the "complete11 case seems to cover the largest class of 

possible applications«    One can think of the vector   x   as representing the 

activity levels of a production plant, constrained by    Ax = b ,   x ^ 0 .    T 

is the "transfomation" of these activity levels into sellable goods»    x c Tx, 

is then the amount of goods the producer decides to place on a market where 

the demand,    5 ,  is only known in probability«   y     and   y"   represent the 

"errors" the producer made in estimating the demand)    q     and   q~   are 

penalty costs for making these "errors".    For instance, an inventory type 

problem has    T ■ I ,q     represents the unit shortage cost, and   q~    the unit 

holding oost, and   Ax = b    the capacity, budget, technology,••« constraints« 

It can be shown that the correlations between the    %.    do not enter the 

problem) we do not need thf  independence of the   C.»     Ua denote the marginal 

distribution functions by   F.(0  1 B l,»«...9m« 

•    . — 
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Tht flrtt Motion of thio rtport ohovo tho oadotonoo of OB oqulmlont 

ooporoblo oooTix proffwi to (3) •   In tho ooeood oootion «o lot tho rondca 

^orloblo   C  otiuao dlfforcnt diotributlono, oad «o dorlto tho oorroopood- 

Inf oqulmlont OOBVOZ progroBo«   flnollji wo ouifoot OB o3forltlm for 

ooMsg (3) vhfB   C   hoo o ooatlnuoui dlftrltoution« 



II.    THE EQUIVALB7T SEPARABLE CONVEX PROGRAM 

Ve aey that a programming If eaulTalant to another prograaBlng 

problem if their eet of optimal solutions is identical«   Let ua consider 

U) Minimize    z(x) = ex + Q(x) 

subject to Ax =b 

x^O 

where 

(5) M°ttt(X,t,f)l*M)) 

and 

(6) Q(x,0 « {Min tV + qVl y+ - y" « C - Tx, y+ ^ 0. y" ^ 0} • 

(7) Propositiont    U) is equiTalsnt to (3) • 

By {5), definition of   Q(x)   and (2), the objective functions of 

(3) and U) are identical.    It suffices to show that (3) and U) haw the 

same set of feasible solutions« 

Since ve seek a here-end-nov solution» s solution to (3) is not a 

pair    (x,y),   but a vector   x.  Our decision   y   is caken when the r.mdom 

event has occurred. 

Our second stage problem 

(8) Minimize    q y   + q~y' 

subject to    Iy+ - ly" = 

y^o 

5 - Tx 

y'^o 



Is always feasible, whatever be the values tssuned by   ?   and   x;  it is 

always possible to express any number as the difference of two non-negative 

numbers«    The constraints limiting the here-and-now decision arei    Ax = b , 

x 2 0 ,   i.e. O) Bjad {A) have the same set of feasible solutions«   If (3) is 

(in)feasible so is (^ and vice versa. 

The word complete« which was used to define the class of lineer programs 

under uncertainty of the form (3), can now be Justified by the properties of 

the solution set,vis«l    every   x   satisfying the "fixed" constrelntsi 

(Ax = b, x ^ 0)    is automatically a feasible solution to problem (3)*    This 

is not the case in general for linear programs under uncertainty. 

Let 
K « (x | Ax « b ,   x ^ 0} . 

If K = (7   we define   Min s(x) » ••, 
xcK 

. 

(10)    Propositiont    {A) is E convex program. 

Since   K   is a convex set and   ex   is a linear function of   x,   it 

suffices to show that   Q^x)    Is convex in   x.   It is easy to verify that 

q(x90    is convex in   x   (see (6)).    The operator   E     applied to   Q(x90 , 

K*St   forms a positive weighted linear combination of convex functions in   x • 

The resulting function   (4(x)    is thus convex« 

In what follows, we assume that (3) is solvable, i.e.    z(x)    attains its 

minimum on   K .   We also assume that   K   has a non-empty interior.^ We now 

show that the Equivalent Convex Prog»inning problem (4) is a Separable Convex 

Programming Problem [2, p. AB2] and this, contrary to the assertion found 

in the Appendix to U» p. 216]. 



The second part of this seotlon describes some useful 

chsracteristies of the objective function of (4).    The last pert is 

devoted to show how the existing solution methods for separable convex 

programs could be used. 

A.    Q(Y)    is separable. 

Let 

th 
Xi S TiX   where Ti lB ^ i  row of T 

and 

Q(x) =  ^   when x = Tx. 

None the less, we should not confuse Q(x) and Q(x). Their domains 

being subsets of R  and R , respectively. 

If the function Q(x) can be written in the form 

Q(x) =2Qi{xi) 

where 

i=l 

Q.(XJ)    is a convex function 

and 

X = (x^» »Xj) 

"Uien   Q(x)    is called convex-separable. 

For a selected   x    (i.e.    x)   and given   K ,   the problem to be solved 

in the second stage ist 



(11) P(x»C) = Mlnlaam 2]qlyl + 5]qiyl 
1=1 

subject to       y1 - ^1*^1' xi 

1 = lf • ••fin 

71 ^ 0       712 0 

The dual to the linear program (11) Isi 

m 

(12) Q(x,0 = Maxlaum VW^^l "Xi) 

1=1 

subject to   -q" ^ v^l^x^) £ ^     ± = l,...tm 

We have already seen that for any given pair    (x> O 9   problem (11)  Is 

always feaslblej problem (12) is feasible iff Vi    the interval      [-q7>q|] ¥ 0' 

These last conditions are completely Independent of the values assumed by 

X   end   I .  Using the Existence Theorem (duelity theory in lineer progrem- 

ming), we establish the followingt 

(13)    Proposition!    (11)  is solvable iff   q+ + q~ = q > 0 • 

The permanent    (Vx* VO    feasibility of (11) and the proposition we 

Just established implies that if the assumption    q   + q~ > 0   was not 

satisfied,  then 

P(X,5)  = -- VC, Vx     (Vx) 

EC{P(X, 0  = -• vx 



and 
z(x) = - • Vx e K    . 

Let 

(U) Q1(x1, 5^ = Maximum     n^, xj^-xj 

subject to    -q^ ^ "l^l» xl^ ^ qi 

(15) Proposltiont Q(x, I) = 2Ql(xi' Ci) * 
1=1 

The optima]  solution to (L4)» and so to (12)   can be obtained es followst 

If    (54-X1) < 0>   set   vAt*» XJ) = -q7   !••• the coefficient of the 

objective function Is negative, ve set   ^(^t X*)    at Its lowest possible 

value because we are maximizing. 

If   ^1 " xi^ > 0>   set   ni^i» ^ = ^ * 

If    {K    - Xi) - 0>   take for   ^(^J» X^)    any value of the Interval    [-qTf q. ] . 

Let 

"i^ = h CoPtlinBl ni^i» Xi)) 

be the expected value of the optimal solution to (1^).    If   5.    has a 

continuous density function, then   ^(x,)    Is unique, but not If    Prob{C.= x1}>^« 

By definition we    set   ^ (x*)  = -q7   when    {K.  - Xi) = 0,   but we come back to 

this problem In the last section (IV). 

In what follows we assume that   q   + q~ = q ^ 0   otherwise our problem 

would be without Interest.    If we assume that the second stage problem Is 
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bounded, then the optiml solution to (11) auat aatiafy the condition 

yV" s 0   (I.e.   y, > 0 -• y7 = 0   and   y" > 0 -» y^ = 0).    One could then 

show that   Q(x)    la convex Iff   q > 0 ,   using e.g. the property that a function 

Q.(x1)    is convex Iff It has non-decreasing first differences and that   Q(x) 

is a convex combination of convex functions. 

Let 

"(x) ■ (n1(x1)»....>TT1(x1)» fn-(x£)) 

Q(x) s\iQixt OJ . 

Since the expectation of a sum of random variables equals the sum of the 

expectation of these random variables and using (15) we have 

i 
(16)    Proposition!     Q(x) = ^ V*^ 

1=1 

Since the different   Qjlx*)    are convex, we have now proved the separability 

of    Q(x) •   Tom the duality theory for linear programming, we also get 

P(X, C)  = Q(x, 5) V given pair   x    and    t , 

then 

P(X) = ^{Hx, 0) = E5{Q(x, C))«Q(x) . 

B.    A Study of   Q1(x1) . 

We point cut some of the charecteristies of the functions   QJ(XJ) *   which 

are useful to simplify the computation procedures when seeking en optimal 
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solution rnd slio to obteln explicit forms for the equlvelent convex 

progrpnuning problem vhen the K. 'a heve some specific distribution 

functions. 

By definition 

(17) 

-<-\ A^ X, a{Ki> 

where 

+ . - qi = 'k + qi 

P.Cr) IS the distribution function of %.  • 

Also 

^^1 ^xi ^1^ xl 

%i ^ xl      *■     ^i ^ xi    J 

We write 

(18)     Q^) = ^1^" ^(Xj) - Vx^Xi 



12 

where 

fl = \^ 

(19) MxJ-i/ ^«1(^1) 

then 
in mm 

Q(X) -S^i^ s2qiei -2 Pi^i5 + "i^i5 xil • 

In order to obtain a more explicit form of QJ(XJ) we divide the range of 

Xj^ in three parts, (- •, o^) , [o^, ß1 ], (ß., + •) and we express Q1(x1) 

for these intervels. If K.    has no lower bound, we set or. = - a, and 

consider the first interval empty, if K.    has no upper bound we set ßj = + 

and the third interval is then empty» 

Case 1.   Xi < <*! then {Cj 1^ £ X^ s # • 

In this region« 

VXi) = qj 

i^Xj) = 0 

and 

5^ ¥*i) 
+ 

= -Vx^ 

on (- •,ar1) 

on (- •,cr1). 



..--.  *■ 
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Thusi the function Q^xJ !■ linear on the Interval (-•»».)• As 

mentioned abore, this Interval nay be empty« (See Appendix I) • 

Cä2£2- «i^X^ßi then {^1 ^ ^ X^ « {^ | ^ ^ ^ ^ 3^) • 

In this region 

^(Xi) «^ -qi/ 1dP1(f1) 

♦A'= Si/*1 Wi* ^ or. 

«i^i'" 
+ st   + 
qi^-qjXi - q. 

on The •form" of the function   QJCX^)    on tuis interval    [a., ß.]    depends 

dF.C^) .   In Section III of this report, we give eamples for a few common 

distributions.    If   QJ(XJ)    is differentlable on this interval, we havei 

1 •'o. 
) on (ofj, ßi) 

S " TTi(xi) on (^j ßi) . 

Case 3.  Xi > ßj then {^ I ^ £ xj« Ij 

In this region 

V^ = qi " ^i s "^1 

V*!) = \\ - ^q + ^Xi« ^V qjXi 



u 
and 

■ - ^(Xj) on (ß1> +•). 

The function Qj(Xi) ii thus linear or the Internal (ß.» +•) . 

(?0) Propositlant QJCX*) is continuous» 

If FJC^J) is » continuous distribution function, it is obvious to 

remark that Qj(Xi) is continuous at all interior points of the intervals 

{-*$%]$   [«!• ßj» [01» + »).  Since Prob { q = Q^ } = Problq = ^J = 0, ^(Xi) ls 

also continuous at or. and ß. • It suffices to shov that QJ^XJ) is 

continuous for Xi    equal to a discontinuity point of F.CCJ) • Without 

loss of generality, ve can assume that Prob(C. = cr.) = f > 0 . 

When XJ converges to or. from the left, ve have» 

lim Q^Xj) s «4 ^i" %«! • 
xi "" i 

When   XJ    converges to   or.    from the right, we havel 

Um   Q1(x1) = lim   q^^ - q^i - ^ /   iiXi - X^dF^) 
Xi^i *i-*i *i 

yr 

=   qi ^i    "  ^i    -   ^     *i   f    i Ui "   Xl)  dFl^i) 
x
i   "1    " a. 

= q1^- qi^ 

^ 
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Since the two limits are equal, Q^XJ) is continuous at cr. • 

The following figure gives the general form of Q^xJ where we 

assumed that FiCO had discontinuities for %.    equal to a., ß., k 

Figure I 

(21)    Propositiont    If    FJ(^)    
is a continuous distribution function,  then 

QICXJ)     is differentiable and 

dfrV^'-Vxi) on   R . 



_ 

16 

Since    FJ^J    ^3 contini-ous, then the derivative Is well determined at 

all interior points of    (- «, a ],  [a., p.],   [ß., +•) .   Moreover,    Qj^Xi) 

is continuous and at   or.    and    ß. ,   the left and the right hand derivatives 

are equal.    This determines    — Q^X*)    at   a.    and   &.    uniquely. 

The figure below indicates the general form of   Q4(XJ)    when    F. (C.) 
iKAi' iv'r 

is a continuous distribution function. 

Figure II 

In what follows, we assume that   a.  > - *•  (in the Appendix I, we give 

the necessary modifications when    a.    does not ^xidt.) 
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Let 

xl = ^i " Xil + Xi2 + Xi3 

with 

0 ^ ^ " «i 1 X il 

o ^ x12 <: ßi - *! 

o ^x 13 

This yields; 

Tix + xil " xi2 " xi3 ~ *i i = 1» »m 

We set 

Qi(xil' Xi2* Xi3) = ^J 

then 

(22)   *±(*ii9 *i2>  Xi3^ = qi Xii + qi X13 + ^i(xi2) 

subject to   ^i ~ ^i ^ xil 

0 ^ xi2 ^i " ai 

O^X 13 

where 

(23) 
0 

and 

h^J  = Fi(^i + ai) ' 
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Since the first term    (-q.iXjJ    ot   ^(x*?)    ia linenr,    qL £ 3   pnd 

/xi2 
(x12 " ^)dF(0    is convex, so is     tfjtx^)        (over its domein). 

The two first terms of   Q^XJ-I» XJ^I Xio)    represents the linear sections of 

QJCX*)!  see Figure I.    The term   QJCXJJ    gives to the function its particular 

character, which depends on    dF.U.) .   As we shall see in III »/.(x^J    ^y 

be a piece-wise linear function, a quadratic    function, and so on.    Let us 

hlso remark that the function   QJCX^I» XJ O» X^-a)    is convex-separable, the 

equivalent convex programming problem to (3)| in terras of   x., x^-i» X^o» Xjo 

is thus H   sepamble convex prograraming problem, linear in   x., XJ-I t XJ-a •   It 

reads i 
n m m 

(24) Mininize z    = ^C ^X' 4 5   ^ qi Xil + ql Xi3 ^   4 S ^i^Xi2^ 
j=l SI i=l 

sib/ect to 
n 

2aljxJ =bi     i«!»«..»» 

n 

V t^Xj + Xn - x^ - x12 « ^ 1 • i,...,i 

0 ^ »j »   ^i  ~ ^i - xil '   0 ^ Xi3 ,   0 < Xi2 £ &!   - «i   • 

C.    Separftble Convex Programming Algorithms 

Two basic references in this arer are [2, pp. ^82-^90] and [5, pp. 89-100]. 

In his book  [2], Dantzig suggests two approaches to these problems!    the 

bounded-variable method (or broken line fit)  and the variable-coefficient method. 

A broken line fit to the    (^(x-J 's    would reduce our problem (24)   to a large 

linear program (the number of variables with bounds would increase).    This is 
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equivalent to the assumption that the distribution of   {.    can be approxlmrted 

by, or is, P discrete distribution,    K.    teking on positive probability ft 

the points where there is r  change in the slope of the broken line fit«  Üre IIT, A« 

If one uses the verifible coefficient approach one should take edventege 

of the ftct that (ZU)  is a  linear progrtramlng problem, but for    XJ ? > 

1=1, •..,£.   The problem then becomes: 

n m in 

(25) Minimize      z = V c^. + V   [q^X11+ ^X^J 4 ^ xig1 

n 

subject to >a. .x. = b.    l = l,...,m 

j=l 

n 

SVj + Xil " Xi3 " Xi2       =Ci    icl'--^ 
J=l 

X12 - \^i = 0      i»lf...,m 

X    =1      i=l,«,.,m 

0 '- *y Ki-ai'- *i2' 0'- *i3' 0 < ^12 ^ ^ - ai 

nd 
X f. 

gi^^i(fi) = "qifi 4 ^i/"    ^i'V^i^^   i"1»---' ra 

The  solution method to this clf>ss  of problems ?s well as the convergence properties 

are  fully discussed in    [2,  pp. 486-490, pp. 433-438], 
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III.    THE PROBABILITY SPACE I    (I, 3, F) 

In this section we derive the equivalent convex programming problem to 

(3),  for some specific distribution functions    F .   Up to now, the assumption 

made  on the distribution of    I.    were limited tot    E{^. ]    exists and one can 

'n 
compute the value   of    f   i2(xi?- l.)*?^),    Vx12c[0, ß^a.]    if 

/xi 
[Xi  - X.)dF1( I.) , 

i 

V XJ « for. i £*]    i.e. the fornulas of the Rieman-Stieltjes Integration by- 

parts apply) •    WP did not require the independence of the    r. , 

A.     T    is finite. 

The notations used in this paragraph differ slightly from the previous 

section« 

Let C '^ T.   < t,.      be the values assumed by t.    with probabilities 

«12 i f; ,   f^ , •.•.,f.      respectively. 

Let 
s-1 

Fi= 2 fi= prob [ii< li] 

k.+l 
i 

i     = 1 = Prob (^ < «} ,   F^ = Prob {^  <ai] * 0 ? 
i 

k i 

2=1 
ie5V'fi = E{V 
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It la et ay to see that 

£5   [Mln       ^l + q-y" I Kl iXii ^J 

i=s-H ~ 

Then k +1 

i=l 
ki 

where     2  Xi    = Xi 

1 • rl - ^1 

k.+l 
0  < Xi 

Since   q^  > 0    (the second stage problem is bovmded by assumption)  and 

P^ < F^1 for   i^l,...,^ 

it is readily seen that    QJ(XJ)    is a piece-wise linear convex fimction» 

This last property allows us to formulate our original problem as e linear 

program    [2, pp. 40^-^85], viz.t 

(26) Minimize z 

k.+l n m       i m 

j=i        1=1 73 Ä 



22 

subject to y   ai ixi = ^^     i=l|...,ni 

j=i i=i 

= o 

x. > 0    , j=l,...,n 

ii        i    i        V1 

for   1=1,...,m   and    i=2l...,k.+l 
m 

where   ^ q. K.   is a constant. 

- Xi-t    in (24.)   corresponds to    x*     end Xi o    In (24-)   corresponds to 

V1 i X.       .    The vnriables   x^ i   ^=2,...,^     in (26)  correspond to the unique 

vmrifible   x^   in (2^) • 

This problem cpn now be solved using e linepr progrsnaaing code with 

upper-bound v&riable option. 

1.    Allocation of Aircraft to Routes under Uncertein Demand 

The approach indicated tbove could be attributed to Ferguson and Dantzig 

where it wes underlying their worki    "Allocation of Aircr&ft to Routes under 

Uncertain Demand."     [2, pp. 568-591].    Using their notation,  the problem 

written in standard form (3) isi 

Im-1   n-1 n_i n_2 
>     > (o      - p. ,k.)x. . +   > c   .x  . +   V^ k,y. 

i«l    i«i TST ' 
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subject to      \x^ ~ hA i=l,...|m-l Zxv sai 

J=l 

m-1 

MJ 
1-1 

j=l,...,n-l 

x11-0*     Xmj ^ 0,    yj ^ 0 1=1,...i^-l ; J=l»»««»n > 

where    y.    Is the number of septs remaining e-vailable end    C.     here is  their 
■J «J 

d, •     The Interpretation of the other symbols Is given in  [29 pp. 574.]» 

This problem hrs the following features! 

c  ,  = 0 for ell    j mj 

In our formulation this merns    q    = 0 

I.e.    qi  - F1 qi= -F^ • 

In their terms    -F^ q" = -k.(F^)  = -k.(l - YJJ 
y y      y     ^y 

p. .>0    implies    >^p. .x. . > 0.   i.e.    Y- > 0   for all     i •      The rsndom 

12 1 variable    (, . on values    K.  <C K <^.      and it is assumed thati 
J , j        J J 

m-1 

i.e.    x^ is fixed at value zero.     Taking these 
«j 

modifications Into account,  the linear program, corresponding to our gener? 1 

form (26)   followst 

m-1     n-1 n-1 j 
i 

(27)   Mm 2 2^xij + 2kj2^x7 + R 

1=1     1=1 J=l        M 



2^ 

n 

subject to   ^    x. . = a.     i=l,.«,,m-l 

1*1 

k. 

Svij - 2XJ =o 
1=1 £=1 

vnere 

und 

xlj 2 0       1=1,...»m-l,   j = l,...,n 

0 < xj < d*      J=l,,..,n    and    jfc=l,...,k 

c. . = c. . - P4^4 i«6« c03^ (negative profit)   of flying 

rircrrft type    1    on route   j    et full 

ctijx city. 
n-1 

J=l 

I 
d.    is defined es nbove« 

There the first   n x m    oolumns of the constrfiints metrix (matrices    A 

and    T    in our standard form (3)  heve the structure of B weighted distribution 

problem,  Ferguson and Dantzig specialized the upper-bound algorithm for linear 

programs to this class of problems which lead to an elegrnt solution technique, 

taking full advantage of the nature  of the problem»    We would like to point 

jut P   slight conceptual difference between Ferguson end Dentzig's formulation 

[2, p. 577] and ours, reflected in the objective functions.    The Ferguson- 

Da ntz ig   ybjectlvr form crn be Interpreted ns follovsi    only the costs of 
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flying ? irplane type    i    on route    j    are certain    (c. .)    end  Dne expects 

a certain revenue obtained when filling up the seat crpecities mede eyuilablej 

where our objective reads as follows!    profit    (c. .)   of flying eircraft type 

i    on route    j    ^.re certain and one expects only a lost revenue resulting 

from not filling the seat-capacity made available«    Obviously, both object- 

ives yield the same values for the optinal    x. . 's   and we can derive one 

from the other. 

2«    Elmaghreby's Approach 

The problem studied by Elmaghraby in "An Approach to Linear Programming 

under Uncertainty,"   [4-], written in standard form, is ns follows: 

+ + 
Minimize z = E^fcx + q y   + q~y~} 

(x,y+,y') 

subject to Ax < b 

Ix 4  ly    - ly"      = K 

x > 0 y+ >   ' y" > 0 

then    Xi  ~ x-   (i=l,...,m = n)    &nd one cen spepk of the   objective function 

n n 

z = ex t Q(x)  = ex + Q(x) =   VcjXj +   S V3^ 

as 8   separable convex function in    x,   rather thea    x    and    x    f<3 before  (21) 9 

but this does not lead to noticeable coraputfttional  simplifications. 

In what follows we present Elmaghreby's version  of the linear program 

used to solve his problem which will obtain its solution by A "sequence"   of 

linear programs (by this he me? ns th/1   Q.(x.)     can be b.'oken up In linear 
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sections rnd the simplex method will exfmine these different linefr 

sections in "sequence") . 
k.+l n      J 

JL 
Minimize    z =    >      >  lc* - cii  - ?< ^ ]*,• 

X j=l    !« 

k.+l 

j=l        \ i=l      / 

sabject to /^a4i i    x.  x^ I = bi    l^lf»^® 

^        ': 
7x.  <C. for    j=l,...,n;   3=1,...,k. 

x=i 

x. ^ 0 j=l,...,n;   i=l,...,k.+l 
J «i 

k.+l 
J 

'j =2XJ • where x 
J 

X=l 

o 

k. 
J 

O ^^  0/ 
If    x.    i» the optimel solution to the problem then    x, =    >^ x       is 

optimF.l for his original problem.    It is obvious that the inequalities 

^    x. ^K.      covild have been used to obtpin upper-bounds for    x     as ws-s 

isl 

done for    XJ    in (26).    This reduces the size of the problem considerfcbly. 

3»    El-Agizy's Approach 

An alternate method to reduce problem (3)  to the linetir programming 

problem (26)  is given in El-Aglzy [3].    This derivation gives also an 
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alternftive proof that the assumption of Independence of the    ^J   's    is 

superfluous. 

B.      ^    ^ uniform,    V 1 

Let 

then 

= 0 otherwise 

= 0 otherwise 

and by (23) 

^(Xi2)  = -q;xi2 + -^ ^   "iXu-t^r ^2+^^y 
q.      r Xi2 

xi2 

(24.)   become^ I 

n m £ 

(23)     Minlndze z = Y c,x,. + V (q!x,,   - dtx,, + ^X,,) 4 V s-^- X,2, 
1 

3=1 1=1 ^  '   : 

n 

subject to      2 ^j^j = ^        1=1,...,m 

n 

2 bljxj + Xi! - Xi2 - X^ - ^ 1=1,...,Ä 
j=l 

C < x. , ^ - or.  ^ Xu , 0 < xi2 £ ßi^,   0 < Xi3 
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(23)  is easily recognizable as a Quadratic Programming Problem for which 

many algorithms exist in the literature, e.g. see [2, pp. A90-^97].    Beele 

was the first one to point out this property for uniform distribution [ 1]. 

C.      ^4    is exponential,     V i 

Let 
.X.C. 

= 0 otherwise 

then 

i^) = f^c,). f, = i 
i 

and by (23) 

^(Xi2)= ^Xi2 + ^\ fXi2 (x^-^e^1 ^ 
0 

^i M        -XiXi2, 
-qiXi2-^(1-e ^ 

using Taylor's expansion 

2    2» 

= Vi2 - r u-i+x^ - ^ + 2 (-1)n ^4 
1 n=3 ni 

~ . 00 n 

n=3 

»n ppproxlaption to    0j(Xjp) 

4 V: - _ -^A 2 
- -(liXi2 

+     2    Xi2 
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The value of this approximetion depends on the relative value of    q.   and 

the proximity of the optimal value of   %.      to   ^ = 7" •    1* we introduce 

the approximation of    /.(x.J    in the objective function of (24)» the 

resulting equivalent convex programming problem ist 

n m m 

(29) Minimize z =  ^ft + T I ^1 " ^V 5 2 ^^ 
j=l 73 L J        !^ 

subject to        > a. .x. = b. i=l,««».m 

=1 

n 

2^ 
j=i 

jXj + xil-xi2 =Xi i=l,...,m 

So as  (28)   this is t  Quadratic Programming Problem    ( V  if   q^V-   > 0). 

Remtirk that we did not Introduce    X* o »   because    3^ = + ^ >   i»e,    5.     hts 

no upper bound» 

D«      K     has a continuous distribution function,     Vi 
■■--■■ ■ I 

In our last paragraph (III«C)   we "accepted" an approximation to the 

objective function in order to reduce  (24)   - the equivalent convex program- 

ming to (3)   - to a quadratic programming problem for which algorithms have 

been developed.    The purpose  jf this paragraph is to suggest rpproxlmption 

for the distribution functions -nd then show that the so obtained "equivrlent" 

convex progrpnuning problem is in P form for which efficient comput? tionpl 
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rthods oxi at« 

We have already pointed out In Sactlon II.C (on Separable Convex 

Programming)  that replacing    Pita J    by a broken line fit is equivalent 

to finding a discrete distribution which would "approximate*1, in some 

sense,  the distribution of the random variable    £.•   Here, ve approximate 

continuous distribution by step-functions«    In other words, we replace 

the random variable    Z..    by a weighted sum of random variables having 

uniform distributions* 

Set 
ki 

h'l*t< 
/*1 

wnere 

I' = 1 

ffCO    isl»«««fk.    are uniform donsity functionsi 

In (2^.).   replace the constraint 

n 

^Art + Xil ' Xi2 " xi3 * ^i 

by   k.     equations of the form 

n 

2L hi*} + Xil    " Xi2   " xi3S ''i 1 = 1,...9^. 

The objective function of (2^)  becomes 
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-     k4 -     k. n m       1 mi 

2 = 2 cixi+ 2 2 pi(qiXiiX' qi'^H 2 2p* ^ Cx'2) • 

We haye slready shown (HI. C) thst if   K.    is xinlform then    fiix^    h£S ' 

linepr snd r quadrrtic term.    See (2£).    Then 

n ä     ki i     kl qj 

z = >-c4xj + > ypi [q^i^ qix12 + q.x^i + gy ypi 7v i2 2 

This approxiflfctlon of rfindom variables having continuous distribution by the 

sum of random variables having uniform distributions led also to a Quadrrtic 
m 

Programming Problem.    It is clear tb.t the increase in size    (3 m X   (k.-1) 
1=1     1 

m 
new variables of which    2m J (k.-l)    are bounded and    (k.-l)m   additional 

1-1    1 

constraints) depends on the des.red q elity of the approximation»    To find 

the    or     and    ß.   ,    lower and upper bounds for    K,  t   see the Appendix to [l]  • 

E.    Summary 

This section has shown that either directly or by approximation it w? s 

sometimes possible to reduce the equivalent convex pr gremming to (3), to 

progrrmming problems f i- „'hiüh we possess efficient ?lgorithiiuu    For simplic- 

ity we nsve pssumed In each pmgrfph thrt the margin'! density function    ^(^4) 

wf s of the 3'me r^ tare      Vit    This is not necessarily the c? se.    It should be 

clerr by i.ow thpt e? ch    ^. (x^ ?)    c? n be tre'ted independently.    For instance, 

if    5.     n-.s •   discrete distribution, -^nd sry    C      a ur.ifcrm distribution it is 

not difficult to sn^w t:;. t tne eqaiv^lent convex progrsr ang problem is ?- 

quadr? tic programming problem. 
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IV.    AN ALGORITHM FOR CaJTINUOUS DISTRIBUTION FUIICTICHS 

life now give an algorithm to solve problem (3) when     V. , ^(^4)    is 

a continuous distribution function.    We assume that the distribution 

functions     ^(Cj    allow Rienan-Stieltjes integration of linear 

functions of   C. ,   We also assume that (3)  is solvable which implies emong 

other conditions that    q ^ 0.    We have shown (4,)  that the equivrlent convex 

progrnmmlng to (3) can be written 

(33) Minimize    z(x)      = ex + Q(x) 

subject to Ax = b 

x > 0 
or 

(30') Minimize   z(x,x) = ex + Q(x) 

Ax = b 

Tx - x =0 

x 2 0 

where 
m m 

Q(x) = V^CXi) = Vkv W - "i^Xil 
1=1 sL J 

then m 

Q(X) = 2qifi ■ 2 l*i(Tix) + "i^i^v 1 • 
1=1 1=1 L J 

m 
Since J^C.   la a constant, we nty delete this term from the objective 

m 
function of our problems.  We also write \j)(x) =   S'MXJ) • 

1=1 

T»" 
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Problem (30)  becomes 

n m 

(31) Minimize    z 

j=i    1=1 L j 

n 

subject to y^ a^ .x.    «   b i-l,...,in 

x, 2 0 j=l,,..,n 

We should note that» 

Iff.(C,)     is continuous et    C. = X* »   then 

n^) = q! - 5^ dF^^)  = < - ii J ^(C. ) . 

5i< Xi '«!< Xi 

If   T. 1^)  > 0    for    Ki = Xj      then      f        dP^C^  /  T dF^?^ 

^Xi Vxi 

and <£ " i   / ^(^ ^ "iCx^  1 qj - ^i   f dF.C? ) . 
^xi Ai<Xi 

In this case a complete rsnge of values exist for the expected values 

of optimal solutions to (Li).    Identical relations hold for    ^(x^) • 

In what follows, we assume thf;t    F. (5.)     is & continuous distribution, 

V i=l,.,.,m.   The following propositions enable us to derive rn - Igorithm 

to solve problem (31),  and consequently problem (3). 
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(32)    Proposltloni    ^ z(x) = c - n(x) T     (i.e.    ^I|I = cj - frr (x) ij , )  . 

The result Is immedirtte if we remark thst (21)  yields   -r- Q(x)  - -n(x) 

and BISO thtt    x = T x . 

(33)    Propositiom    rc-n(7)T|x - \j>(y)   is e supporting hyperplane of 

z(x)    at    x = 7   where    x = T J . 

In view of (32),  it suffices to   ihow that    z(x)  = rc-n(x)T]x - \|)(X) 

which is obvious by the definitions o/    z(x) . 

(3^)    Propositiont    If  fc-n (x) ll (x - x)   > 0 ,    Vx e K    then    z(x)    has B 

ndnimum ht    x • 

Since    z(x)    is convex, then the following inequality holds  [7] : 

a(x) -z(X) >   [C-TT(X)T] (x-x) . 

Moreover,  by hypothesis the second term  ^f this inequality is n jn-neg? tive 

for hll xcK .     This implies 

z(x) 2 z(«) VxcK . 

(35)    Proposition!    Let x,x«K and such thtt    [c-TT(X)T 1 x > [c - n(x) T] x 

then     3x*€(x, x]     suchthat    z(x*)   < z(x), 

Since    [c-TT(X) T |x > I c-TT(X)T I x ,   we have 
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Let    [c-TT(X')T]X' ^ [c-TT(X')T]X     VXCK    then by (30     x"    is    ptlmsl. 

Let    z(x0)   _^ 2(x)    Vx «K    and ^ sume that     3x cK    such that 

rc -TI(X
0
)T]X

0
   > [c -n(x0):]x 

then by proposition (35)»    3 xe(x0,x]     s.ch that    z(x)   < z(x0) ,   which 

contradicts  the f-ssumptioni       3xeK    such that    [c - TT(X
0
) TJx* > [c-n(x')T]x. 

Let us now consider the following linear programming problem. 

(33) Minimize    [c-Ti(xk)T]x 

subject to Ax = b 

x >  1 

where 

X    - T x      ,   x   c K 

Since problem (31)   is  solvable,   so is pr .blem (38)     Vx   eKj   (proposition  (20) 

und the line-rity  of the term    ex    proves the continuity    f    z(x)      -ver    K  ). 

3y (37),  ii'    x     is an optimal solution to (38),  then    xk    is   optimal for (31). 

If    x      is n )t an optimal solution,   then by (36)   the   optimal   solution to  (38), 
_ )< 

say    x    ,    is  such that 

rc -n(x ) :](x    - x )   >   j 

then by (35),   3xk+1 c (xk , xk ]    such that 

z(x     )   ^ S(x ) . 

k+1 k+1 
3ince    x"     cK ,   we cm find    TT(X      )     nnd solve r  new llneer program   if the 
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pnd 

X   < X ^ Vs = {1,2,..., r -^ 2m +  2} . 

k      - k v /v'fc assi.mcd here that    x-   - X .• > 0 »    this is n .t the case    V   ,    we 

ievelop the derivation of   ^x C(^)    in nore detail in Appendix II.  To find 

the minimum of    C(M    we  successively compute the value  of    jjrC (X)     at 

the points    \,    (at most    2 m  +  2) ,   for    s=l,...,r. 

If    -jrCCO)  > 0    then    C(M     attains its minimum on  [0,1] at    \ = 0. 

If    ^-C(XJ  < 0   and   ^^(K
sn)  > 0    then    C(M     attains its mininura 

at   some ^ c [X , ^g4,T 1 • 

If   Ä-C(l)  < 1   then    C(^)     attains its minimum on  [ ),l] rt   \ = 1 . 

If    C(X)     f.ttfins its minimum ft    \ = 1,    then 

z(x ) ^ z(x)        V x « [x , X ] , 

It 
This implies that    x     V'S sn  optimsl solution to (38),   otherwise vre 

k k contradict (36), thus    x      is f.n   sptimel solution to (31).    Let    \      be the 

minimum  jf    t,{\)  = 5(\ xk + (l-\)xk)    m [0,1)  we set 

k-fl      .kk       /.     %kx-k 
x        = \   x    + (1 -X ) x    . 

A flow chart  of this algorithm is given ft the end.    We now show the convergence 

of this process.    Propositions  (35)   and (36)  assure us that if   x      is not an 

k k + 1 
optinjfil  solution for (31),   then    z(x )   > z(x        )     since    z(x)    attains its 

k  - K k -> 1 
minimum value on    ^x ,x    ]    at    x .   Moreover, problem (31)  being solvable 

implies that the series    {z(x )}    is Cauchy convergent. 
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— k       k * -   k Is finite, we have    x   = x , Vk ^ k   .   Let us assume that    z(x )  > z(x0)   yfk9 

then 

(A3)    Propositlont     jf D > 0    suchthat [c-n(xk)T](xk - ik) > D   Vk . 

Let us assume that    3D > 0    such that    [c-n(xk)T](xk-xk) =^-C(l) > D; V k 

then by continuity of    n(x)f see (20), and for    k ^ k , 3 v, c (0,1]    such that 

k-n(vkxk4  (l-vk)xk)T](xk-5k)  =^:':(vk) =DA 

Moreover, by convexity of z{x)9 we have 

z(xk) -z(vkxk+ (l-v
k)xk) ^(l.vk)[c.n(vkxk+ (1 - vk)xk)T](xk-xk) 

and we also have 

z(vkxk + (l-vk);k)- z(xk + 1) ^0 

Adding up these two Inequalities, we obtain 

z(xk)-   z(xk+1) ^ (l-vk)[c-TT(vkxk
+  (l-vk)xk)T](xk-5k) = § (l-vk) 

thus 

k+1, (i-vK) ^f r5(xK) -z(xK + i)] 

. .     k v 2 r-/ k+ 1,       */  kv 1      . 1 ^ v    2 D      ^x       ^  - «(x )] + 1 

Since lz(x )) is cauchy convergent, we have 

11m vk = 1 

k -• • 

mi—r*     





\ —»- 

Flov-Chart of the Algorithm 

Initiate with 

.F(0 

wnerf    C^    Is the mode, median or 

expectation 

Minfc~n(xk}T]i 

A x = b 

x ^ 0 

Termlru; te 

xk    Is t e 

optlml 3';11- 

tlon for   (3) 

Set    k = k + 1 

-K 
Let    x      be an optimal 

solution.    Then 

Min<.(\)= z(\xk-f (l-\)ik) 

say Cf>.,CV;(\),V^c[0,lJ 

Compete    k4l     k   k 

x =\    X     +   (l-\)   X 

k 4 1_   _  k 4 1 
X        =  xx 

nCx^^-qY dF 
•Vv^xk H 

(0 
K>TXi 

/       k4 1 
d F 1 0 
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David Kohler wnte an experlmeiital ode for this algorithm.    We used 

IBM 7094 and solved a few examples for which the computing time was 

v^ry reasonable.    An outline of this code, Its ffatures, an intuitive 

Justification and examples are given in  [8], 



m 
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APPS.DIX I 

We derive here an explicit expression for   {J. (.X-)  when    £.     has nc 

lower bound  (JTT.C;.    We recall 

+ = 

where 

Vxi)   S qi ^i " Vi(iXij   " "i^i^i 

^i)mTk L, 5idFiui) 

We divide  the ifnge   of   x^     ^ ^vo parts  ^ nd derive explicit expressions 

for   y^X*)    on those intervalsi 

C^se 1.    x1 i Pi    then    {^J l^it^]    is the set  jf integration for   V^X^) 

«nd    -n^x^j . 

In this region, we have 

^IX j) =<-51/
Xi*1U1. 

^ _   OD 

* ~ a. 

«Vx,; =< 51-<xi-q1/
Xlu1-x1)dF1u1). 

Tf    'c Izw     is differcntiable on the interval    l-*>ßj)>    we have 
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Case 2.    ^1 < Xi    then    1^1^^)=   Zi 

In this region 

ni(xlJ = -q^ 

Q.CXi) = -qi'tl+ q^Xi 

and 

d^ Qi(xi) = qi = ■TIl(xi) on    ltjl'+ ^ * 

The function    U^U^    is linear on    13^,+ ") . 

Let 

^i = xi2 + xi3   vith   xi2 < ^i' 0 ^ xi3   flnd   Tix " xi2 " xi3 = 0 * 

Let 

^X^ - (^1U12» Xi3) 

then x 

QiCx^.X^)   -<ti-<X12+qi/   i2lXi2-  q^dF,!^)   .q-x^  . 

In a similar manner we could have given an expression for    Q1(x1}    when 

X..    has no upper bound but this could be obtained Immediately from (22), 

by letting    0.  = J *  and deleting the term in   XJO t   s«€ e«g»  (29). 
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AP?H:DTX II 

From (39) 

C(X) = z(Vxk
+ (l-\)x

k) 

n m 

= \Vc.(xk-xk)   -2^i(X(xi  - >ri)4^l) 

^(Mxk -xk)+ x^MxJ - xk^xk) 

\ k      - k       - k 
In order to simplify our notations, we   shall write    x-     ^or    ^(XJ  - X • ) + X i • 1 i i _ 

Let us consider   t|). (Y.)    and    n. (v.) , i    i li 

If    X.   - Xi= 0,    then   ^ n
1(xi)   = ^^^X^  = 0 ,   we delete  thosr   terms, 

k      - k k      - k ^ In what follows,  let us assume that    XJ-XJ>0»   if    XJ   ~ X i   W 0    the 

inrqualities we  obtain for the regions  of    \    should be reversed. 

-k 

:a3 N. ^i  " X i 
1 1.    xi  ^ ^    then   \ £     k      Tk 

Xi  -Xi 

an i 

n.   v.)  = a. 

^(xp = o 

d   ,   / \v  _     +,  k      -ks 
^ ^(Xj  - -qi(xi   - X^ 

Case  2. ^i £ xi £ a. 
oiA - x 

-k 
i 3.   -X 

-k 

then    -r T— 

X,   - 
-k — —       K 

X, 
-k 

- X 
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\ 

\ 

,J'1(X1) = \/ i   ^l^l5 

\ 

ai 

and \ 

^    .,   Bl-^ Case 3.      X1 ^ ti   then   -^ ~- ^ \ 
x1 -x1 

and 

TT1(xi)  = -qj" 

^(x^) ^q 

-k -k 
*!  ~ Xi        ei  ' Xi Thf;  points    —r r ,    —r r     ietermine a change In the expressions we 
xi - x1      x1 - x.: 

btaln for the derivatve   -f each    Z.A\.)    with respect to    X.   The 

]( rlvatlvf   if    £.(\)    vith re;;pect to    \    will also change at those points 

(2 m  at most).    But we are only Interestf J in those which bplong to  [0,1]. 
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Let us df fine 

(xs}= ^^T^T ' V^t»   i = i,...,£IS<S + 1}nfo,i] 
x1 - x 1      xi - X . 

and Irt 

h3 = 
Of. 

-k 
X, 

k      -k ^X
S+l'

Xs + l«tV 

^ = 

I? = 

-k 

^  \    ^ \ < k      -k-     s s+1-     k     -k 1 Xi  - X i 

I ßi -^i 
1 Xl " x i 

Xi-Xj 
» Ks'X8+r € ^s3 

,s If    1 c I,  .   that means that on the Interval     [^   . X    , ,1    the derivative 
1  ' S*       3 + 1 

4-      V — If g 
^f Q. (X-)  takes on the value  q^lx* - X *) J ^ i • I-a we ^^ 'to U3e ^he 

thi rd form of the derivative  of    -jr- Q1(x1) •   F^r    \ c rV   »x   +11    w   grts 

. V 

k      -k 

"-.§.«-^-^ 
+ /  k      -kv 

q^Xi - x!) 

+2 qi(xi "^^ +28^
(xi "^^Z 1 

i c I» i cl!! or. 

X-J)/     ^dF^V 

A simple algpbraic manipulation gives us  (^0).    It is very easy to see  how 

the 
s s s 

construction  of the srts     I_ ,   I      and    I-    havf   to be modified if 

k       -k   / n xi  - X ,    < 0. 


